CONFIDENTIAL

BA601: ENGINEERING MATHEMATICS 5

SECTION A

STRUCTURED (25 marks)

INSTRUCTION:

This section consists of **ONE** (1) question. Answer **ALL** questions.

QUESTION 1

- a) Find the values of the following functions: CLO 1 : C1
 - cosh 4.5

(2 marks)

ii tanh (- 0.5)

(2 marks)

iii. $\sinh(-0.375) + \cosh(1.35)$

(3 marks)

- The curve assumed by a cable is $y^2 = c \cosh \frac{x}{c}$. If c =50 and (4 marks) x=109 find the value of y.
- c) Find the principle values for the following functions. Then, with CLO 1: C1 the help of a graph, find all solution for θ from 0° to 360° .

i.
$$\theta = \cos^{-1} 0.45$$
 (3 marks)

ii.
$$\theta = \sin^{-1}(-0.8660)$$
 (3 marks)

iii.
$$\theta = \tan^{-1}(\sqrt{3})$$
 (3 marks)

d) Prove that
$$\frac{1 + \tanh x}{1 - \tanh x} = e^{2x}$$
 CLO1: C2 (5 marks)

Page 2 of 7

EXAMINATION AND EVALUATION DIVISION DEPARTMENT OF POLYTECHNIC EDUCATION (MINISTRY OF HIGHER EDUCATION)

DEPARTMENT OF MATHEMATICS, SCIENCE AND COMPUTER

FINAL EXAMINATION
JUNE 2012 SESSION

BA601: ENGINEERING MATHEMATICS 5

DATE: 17 NOVEMBER 2012(SATURDAY) DURATION: 2 HOURS (2.30PM - 4.30PM)

This paper consists of **SEVEN** (7) pages including the front page and appendix.

Section A: **ONE** (1) question – Answer all. Section B: **THREE** (3) questions – Answer **TWO** (2) Section C: **TWO** (2) questions – Answer **ONE** (1)

CONFIDENTIAL
DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED
BY THE CHIEF INVIGILATOR

QUESTION 3

a) Use implicit differentiation to find $\frac{dy}{dx}$ for the equation below. CLO 2: C3

$$5x + 3\sin y - x^2y^3 = 0 ag{5 marks}$$

b) Given that $z = 3y^4 + 5x^2y^3 - 4x^4$, find: CLO 2: C1

i.
$$\frac{\delta z}{\delta r}$$
 (2 marks)

i.
$$\frac{\delta z}{\delta x}$$
 (2 marks)
ii. $\frac{\delta z}{\delta y}$ (2 marks)

iii
$$\frac{\delta^2 z}{s_{\nu^2}}$$
 (2 marks)

iv.
$$\frac{\delta^2 z}{\delta v^2}$$
 (2 marks)

v.
$$\frac{\delta^2 z}{\delta x \delta y}$$
 (1 mark)

c) Given that
$$z = 2\sin(3x^2 - 2y)$$
, find: $\frac{\delta z}{\delta x}$ and $\frac{\delta z}{\delta y}$ (4 marks)

b) Given that
$$z = x^5y + 3xy^5$$
. Find the total differential of z, dz, when a point changes from $(1,2)$ to $(1.02,1.98)$. (7 marks)

SECTION B

CONFIDENTIAL

STRUCTURED (50 marks)

INSTRUCTION:

This section consists of **THREE** (3) questions. Answer **TWO** (2) questions only.

QUESTION 2

Differentiate the following equations with respect to x:

i.
$$y = \sec^{-1}(e^{2x})$$
 CLO2: C1 (4 marks)

ii.
$$y = \sqrt{2} \ln(\cosh 4x)$$
 CLO2: C3 (4 marks)

iii.
$$y = 3\sinh^2(5x)$$
 CLO2: C2 (5 marks)

iv.
$$y = \frac{\sin^{-1} x^3}{x}$$
 CLO2: C3 (6 marks)

V.
$$y = 4 \tanh^{-1}(e^{2x} \cos x)$$
 CLO2: C3
(6 marks)

Page 4 of 7

SECTION C

STRUCTURED (25 marks)

INSTRUCTION:

This section consists of TWO (2) questions. Answer ONE (1) question only.

QUESTION 5

Determine the first order differential equation by using appropriate

methods for each function below:

CLO3: C4

a)
$$x^2 - 2x + 4\frac{dy}{dx} = 9x^2 + 2x - 8$$
 (5 marks)

b)
$$\frac{1}{y} \frac{dy}{dx} = \frac{(2x^2 + 1)}{(y - 3)^2}$$
 (7 marks)

c)
$$\frac{dv}{ds} = (5s^2 + 4)^2$$
 (5 marks)

$$x\frac{dy}{dx} = \frac{-2y^2}{1+y}$$
 (8 marks)

QUESTION 4

a) Integrate the following functions with respect to x. CLO 2: C2

i.
$$\int \cos e c h^2(3x) dx$$
 (3 marks)

ii.
$$\int \frac{4dx}{\sqrt{121 - 25x^2}}$$
 (5 marks)

iii.
$$\int \frac{dx}{x^2 - 2x + 2}$$
 (6 marks)

i.
$$\int_{1}^{2} \frac{2dx}{\sqrt{64 - 16x^2}}$$
 (6 marks)

ii.
$$\int_{3}^{3} \frac{\sinh x}{\cosh x} dx$$
 (5 marks)

RUMUS BA601: ENGINEERING MATHEMATICS 5

,	FRIGONOMETRIC IDENTITIES	INVERSE HYPERBOLIC FUNCTIONS	DIFFERENTIATION OF INVERSE HYPERBOLIC FUNCTIONS
	$\cos^{2}x + \sin^{2}x = 1$ $\sec^{2}x = 1 + \tan^{2}x$ $\csc^{2}x = 1 + \cot^{2}x$ $\sin 2x = 2 \sin x \cos x$ $\cos 2x = \cos^{2}x - \sin^{2}x$ $= 1 - 2 \sin^{2}x$ $= 2 \cos^{2}x - 1$ $\tan 2x = \frac{2 \tan x}{2}$	$ sinh^{-1} x = ln (x + \sqrt{x^{2} + 1}); -\infty < x < \infty cosh^{-1} x = \pm ln (x + \sqrt{x^{2} - 1}); x \ge 1 tanh^{-1} x = \frac{1}{2} ln \frac{1 + x}{1 - x}; x < 1 sech^{-1} x = ln \left(\frac{1 + \sqrt{1 - x^{2}}}{x} \right); 0 < x \le 1 $	$\frac{d}{dx}(\sinh^{-1}u) = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx}$ $\frac{d}{dx}(\cosh^{-1}u) = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$ $\frac{d}{dx}(\tanh^{-1}u) = \frac{1}{1-u^2} \frac{du}{dx}, u < 1$ $\frac{d}{dx}(\coth^{-1}u) = \frac{1}{1-u^2} \frac{du}{dx}, u > 1 $
	$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$ HYPERBOLIC IDENTITIES	$cosech^{-1} x = ln \left(\frac{1}{x} + \frac{\sqrt{1 + x^2}}{ x } \right); x \neq 0$ $coth^{-1} x = \frac{1}{2} ln \frac{x + 1}{x - 1}; x > 1$ DIFFERENTIATION OF	$\frac{d}{dx}(\operatorname{sech}^{-1} u) = \frac{-1}{u\sqrt{1 - u^2}} \frac{du}{dx}$ $\frac{d}{dx}(\operatorname{cosech}^{-1} u) = \frac{-1}{ u \sqrt{1 + u^2}} \frac{du}{dx}$ DIFFERENTIATION OF INVERSE
	$cosh^{2}x - sinh^{2}x = 1$ $sech^{2}x = 1 - tanh^{2}x$ $cosech^{2}x = coth^{2}x - 1$ $sinh 2x = 2 sinh x cosh x$ $cosh 2x = cosh^{2}x + sinh^{2}x$ $= 1 + 2 sinh^{2}x$ $= 2 cosh^{2}x - 1$ $tanh 2x = \frac{2 tanh x}{1 - tanh^{2}x}$	TRIGONOMETRIC FUNCTIONS $ \frac{d}{dx}(\sin u) = \cos u \frac{du}{dx} $ $ \frac{d}{dx}(\cos u) = -\sin u \frac{du}{dx} $ $ \frac{d}{dx}(\tan u) = \sec^2 u \frac{du}{dx} $ $ \frac{d}{dx}(\cot u) = -\csc^2 u \frac{du}{dx} $ $ \frac{d}{dx}(\sec u) = \sec u \tan u \frac{du}{dx} $ $ \frac{d}{dx}(\csc u) = -\csc u \cot u \frac{du}{dx} $	TRIGONOMETRIC FUNCTIONS $ \frac{d}{dx}(\sin^{-1}u) = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} $ $ \frac{d}{dx}(\cos^{-1}u) = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx} $ $ \frac{d}{dx}(\tan^{-1}u) = \frac{1}{1+u^2} \frac{du}{dx} $ $ \frac{d}{dx}(\cot^{-1}u) = \frac{-1}{1+u^2} \frac{du}{dx} $ $ \frac{d}{dx}(\sec^{-1}u) = \frac{1}{u\sqrt{u^2-1}} \frac{du}{dx} $ $ \frac{d}{dx}(\csc^{-1}u) = \frac{1}{u\sqrt{u^2-1}} \frac{du}{dx} $
	HYPERBOLIC FUNCTIONS	DIFFERENTIATION OF HYPERBOLIC FUNCTIONS	INTEGRATION OF HYPERBOLIC FUNCTIONS
	$\sinh x = \frac{e^x - e^{-x}}{2}$ $\cosh x = \frac{e^x + e^{-x}}{2}$	$\frac{d}{dx}(\sinh u) = \cosh u \frac{du}{dx}$ $\frac{d}{dx}(\cosh u) = \sinh u \frac{du}{dx}$	∫ sinhudu=coshu+c ∫coshudu=sinhu+c

CONFIDENTIAL

QUESTION 6

a) Solve the following equations: CLO3:C3

i.
$$\frac{dy}{dx} + 3y = e^{4x}$$
 (5 marks)

ii.
$$\frac{dy}{dx} = \frac{3x + 4y}{3x}$$
 (9 marks)

b) Solve the following second order differential equations: CLO3: C3

i.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = 0$$
 (8 marks)

ii.
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$$
 (3 marks)