CONFIDENTIAL

BA501: ENGINEERING MATHEMATICS 4

SECTION A

STRUCTURED (25 marks)

INSTRUCTION:

This section consists of TWO (2) structured questions. Answer ONE (1) question only.

QUESTION 1

- a) Expand the expression of
 - i. $(2-3x)^5$ using the Pascal's Triangle.

[CLO1: C3]

(5 marks)

ii. $\frac{2x}{(1-2x)^2}$ until the first four terms.

[CLO1: C3]

(5 marks)

- b) Determine the coefficient of x^3 in the expansion of $(2x \frac{1}{3x^2})^{12}$ [CLO1: C3] (7 marks)
- c) Expand the expression of $(1+2x)^5$ using the Binomial Theorem up to x^4 . Hence, find the value of $(1.02)^5$ correct to 3 decimal places. [CLO1: C3] (8 marks)

POLITEI KNIK

Jabatan Pengajian Politeknik

EXAMINATION AND EVALUATION DIVISION DEPARTMENT OF POLYTECHNIC EDUCATION

(MINISTRY OF HIGHER EDUCATION)

MATHEMATICS, SCIENCE & COMPUTER DEPARTMENT

FINAL EXAMINATION

JUNE 2012 SESSION

BA501: ENGINEERING MATHEMATICS 4

DATE: 17 NOVEMBER 2012 (SATURDAY) DURATION: 2 HOURS (8.30AM – 10.30 AM)

This paper consists of NINE (9) pages including the front page.

Section A: Structured (2 questions – answer ONE (1) question only)

Section B: Structured (2 questions – answer ONE (1) question only)

Section C (JKE, JKP, JKPK): Structured (2 questions – answer ONE (1)

question only)

Section D (JKM): Structured (2 questions – answer ONE (1) question only)

Section E: Answer ONE (1) question from section A, B or C (for JKE, JKP and JKPK) and section A, B or D (for JKM).

CONFIDENTIAL DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE CHIEF INVIGILATOR

(The CLO stated is for reference only.)

SECTION B

STRUCTURED (25 marks)

INSTRUCTION:

This section consists of TWO (2) structured questions. Answer ONE (1) question only.

QUESTION 3

- a) Given the coordinates of A(4, -2, 5), B(1, 3, 0) and C(2, 3, -1). Find
 - i. \overrightarrow{AB}

[CLO2:C2] (3 marks)

ii. \overrightarrow{BC}

[CLO2:C2] (3 marks)

iii. $\overrightarrow{OA} + 2\overrightarrow{OB}$

[CLO2:C2] (2 marks)

iv. $\overrightarrow{OA} \bullet \overrightarrow{OB}$

[CLO2:C2] (3 marks)

v. $\overrightarrow{OB} \bullet \overrightarrow{OC}$

- [CLO2:C2] (3 marks)
- b) Given the position vectors, $\overrightarrow{OP} = (3, 4, 5)$, $\overrightarrow{OQ} = (-2, 3, 1)$ and $\overrightarrow{OR} = (4, 3, -2)$. Determine
 - i. $\overrightarrow{OP} \times \overrightarrow{OR}$

[CLO2:C3] (3 marks)

ii. $\overrightarrow{OP} \bullet (\overrightarrow{OQ} \times \overrightarrow{OR})$

[CLO2:C3] (5 marks)

iii. $\overrightarrow{OP} \times (\overrightarrow{OQ} \times \overrightarrow{OR})$

[CLO2:C3] (3 marks)

QUESTION 2

CONFIDENTIAL

- a) Determine the power series of $(1-2x) e^{-2x}$ until the first five terms. [CLO1:C3] (8 marks)
- b) Expand the expression of $\ln\left(\frac{1+3x}{(1-2x)^2}\right)$ until the first four terms. [CLO1:C3] (10 marks)
- c) Find the first four terms of $f(x) = \sin(2-x)$ using the Mac Laurin series. [CLO1:C3] (7 marks)

SECTION C (JKE, JKP, JKPK):

STRUCTURED (25 marks)

INSTRUCTION:

This section consists of TWO (2) structured questions. Answer ONE (1) question only.

QUESTION 5

a) Calculate the Laplace Transform of f(t) using the

definition of $F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$.

i. f(t) = -9

[CLO3:C3] (7 marks)

ii. $f(t) = 7e^{4t}$

[CLO3:C3] (7 marks)

b) Determine the Laplace Transform for each the following functions

i. $f(t) = (3t-2)^2$

[CLO3:C3] (3 marks)

 $f(t) = \frac{e^{5t}}{2} + 5 - 3t$

[CLO3:C3] (3 marks)

iii. $f(t) = 4\cos 5t + 2\sinh 3t$

[CLO3:C3] (3 marks)

iv. $f(t) = t^2 e^{-3t}$

[CLO3:C3] (2 marks)

QUESTION 4

CONFIDENTIAL

Convert the fractions below to partial fractions.

a)
$$\frac{x+1}{x^2+2x-3}$$

b)
$$\frac{2x^4 - 8x^2 + 5x - 2}{x^3 - 4x}$$

c)
$$\frac{5x^2 + 3x - 2}{x^2(2x^2 + 1)}$$

BA501: ENGINEERING MATHEMATICS 4

QUESTION 6

- a) Find the centre, vertices, foci and asymptotes of the hyperbola $y^2 4x^2 = 16$. [CLO4:C3] (7 marks)
- b) Find the centre, foci, vertices, eccentric and directrixs for the ellipse $\frac{(x-3)^2}{16} + \frac{(y+4)^2}{9} = 1$. Hence, sketch the graph by showing the vertices and centre of the Ellipse.[CLO4:C3]

(18 marks)

SECTION E

Answer **ONE(1)** question from section **A**, **B** or **C** (for **JKE**, **JKP** and **JKPK**) and section **A**, **B** or **D** (for **JKM**).

QUESTION 6

CONFIDENTIAL

- a) Find the Inverse Laplace Transform for the fractions below:
 - i. $\frac{3}{2s-15}$

[CLO3:C3] (3 marks)

ii. $\frac{6s+4}{s^2+16}$

- [CLO3:C3] (4 marks)
- b) Determine the Inverse Laplace Transform using the Partial Fraction method:
 - i. $\frac{4}{s(s-1)}$

[CLO3:C3] (8 marks)

ii. $\frac{s}{(s+1)(s^2+1)}$

[CLO3:C3] (10 marks)

FORMULA BA501 - ENGINEERING MATHEMATICS 4

Binomial Expansion

1	$(a+x)^n = a^n + {^nC_1}a^{n-1}x + {^nC_2}a^{n-2}x^2 + \dots + x^n$	(n = positive integer)
2	$(1+x)^n = 1 + nx + \frac{n(n-1)x^2}{2!} + \frac{n(n-1)(n-2)x^3}{3!} + \dots \infty$	(n = negative interger or fraction)

Po	ower Series	
1	$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!}$	
2	$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n}$	
3	$f(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \dots + \frac{f''(0)x^n}{n!}$	(MACLAURIN
4	$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)(x - x_0)^2}{2!} + \frac{f'''(x_0)(x - x_0)^3}{3!} + \dots + \frac{f''(x_0)(x - x_0)^n}{n!}$	(TAYLOR)

Vector & Scalar

1	$\overline{A} \bullet \overline{B} = a_1 a_2 + b_1 b_2 + c_1 c_2$	3	$\cos \theta = \frac{\overline{A} \bullet \overline{B}}{ A B }$	5	Direction Cosine \overrightarrow{OP} Cos $\alpha = \frac{x}{ \overrightarrow{OP} }$ Cos $\beta = \frac{y}{ \overrightarrow{OP} }$ Cos $\gamma = \frac{z}{ \overrightarrow{OP} }$
2	$\overline{A} \times \overline{B} = \begin{pmatrix} i & j & k \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}$	4	$\hat{u} = \frac{\overline{u}}{ u }$ Unit vector	6	Area of a triangle $\frac{1}{2} \overrightarrow{AB} \times \overrightarrow{BC} $

Non Linear Equation (Circle)

	$(x-a)^2 + (y-b)^2 = r^2$	8.	
2	$x^2 + y^2 + 2gx + 2fy + c = 0$	$r = \sqrt{g^2 + f^2 - c}$	center = (-g, -f)

3 | Equation of a tangent, $y - y_1 = m(x - x_1)$

Parabola

-	arabola		
1	Vertical	i. $x^2 = 4ay$	ii. $(x-h)^2 = 4a(y-k)^2$
2	Horizontal	i. $y^2 = 4ax$	ii. $(y-k)^2 = 4a(x-h)^2$
3	Vertex	v = (h, k)	
4	Focus	$(h \pm a, k)$ (horizontal)	$(h, k \pm a)$ (vertical)
5	Directrix	i. $x = h - a$	ii. $y = k - a$

CONFIDENTIAL

BA501: ENGINEERING MATHEMATICS 4

SECTION D: (JKM)

STRUCTURED (25 marks)

INSTRUCTION:

This section consists of TWO (2) structured questions. Answer ONE (1) question only.

QUESTION 5

- a) Find the equation of a circle with its centre (5,-2) and touches the line of 4x 3y + 4 = 0. [CLO4:C3] (4 marks)
- b) Find the equations of the tangent and normal to the circle $x^2 + y^2 3x + 5y 2 = 0$ at point A(-1,7). [CLO4:C3] (9 marks)
- c) Diagram 5(c) shows a parabola. Find the focus, directrix, axis and equation of the parabola. [CLO4:C3] (12 marks)

Pages 8 of 9

Laplace Transform

BIL	f(t)	F(s)	BIL	f(t)	F(s)
1	а	$\frac{a}{s}$	13	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a^2)+\omega^2}$
2	t ⁿ	$\frac{n!}{s^{n+1}}$	14	$e^{-at}\cos\omega t$	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$
3	$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	15	sinh ot	$\frac{\omega}{s^2 - \omega^2}$
4	e^{-at}	$\frac{1}{s+a}$	16	cosh ωt	$\frac{s}{s^2-\omega^2}$
5	te ^{-at}	$\overline{(s+a)^2}$	17	e ^{at} sinh@t	$\frac{\omega}{\left(s^2-a^2\right)-\omega^2}$
6	$t^n e^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{(s-a)^{n+1}}$	18	e ^{at} coshωt	$\frac{s-a}{\left(s^2-a^2\right)-\omega^2}$
7	$t^n.f(t)$	$(-1)^n \frac{d^n}{ds^n} [F(s)]$	19	$f_1(t) + f_2(t)$	$F_1(s) + F_2(s)$
8	sin \ot	$\frac{\omega}{s^2 + \omega^2}$	20	$\int_{o}^{t} f(u) du$	$\frac{F(s)}{s}$
9	cos wt	$\frac{s}{s^2 + \omega^2}$	21	f(t-a)u(t-a)	$e^{-as}F(s)$
10	t sin wt	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$	22	First derivative $\frac{dy}{dt}, y'(t)$	sY(s)-y(0)
11	t cos wt	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$	23	Second derivative $\frac{d^2y}{dt^2}, y''(t)$	$s^2Y(s)-sy(0)-y'(0)$

Trigonometry Identity

_ 11	igonometry identity	
1	$\sin 2x = 2\sin x kos x$	
2	$kos2x = 2kos^2 x - 1 = 1 - \sin^2 x$	

CONFIDENTIAL

BA501: ENGINEERING MATHEMATICS 4

QUESTION 6

a) Find the centre, vertices, foci and asymptotes of the hyperbola $y^2 - 4x^2 = 16$. [CLO4:C3] (7 marks)

Find the centre, foci, vertices, eccentric and directrixs for the ellipse $\frac{(x-3)^2}{16} + \frac{(y+4)^2}{9} = 1$. Hence, sketch the graph by showing the vertices and centre of the Ellipse. [CLO4:C3]

(18 marks)

SECTION E

Answer ONE(1) question from section A, B or C (for JKE, JKP and JKPK) and section A, B or D (for JKM).