CONFIDENTIAL

BA201: ENGINEERING MATHEMATICS 2

SECTION A

STRUCTURED (25 marks)

INSTRUCTION:

This section consists of ONE (1) compulsory structured question.

QUESTION 1

(a) Given that $Z_1 = -1 + 3i$, $Z_2 = 5 - 9i$ and $Z_3 = -2 - 6i$. Express each of the following in the form of a + bi.

i.
$$Z_1 + Z_2$$
 CLO 1 : C2

(2 marks)

ii.
$$2(Z_2 - Z_3)$$

CLO 1: C2

(2 marks)

iii.
$$\frac{Z}{Z}$$

CLO 1 : C2 (4 marks)

(b) Given that (2-9i) = (x-4) + (3yi) Find the value for x and y. CLO 1: C2 (4 marks)

Page 2 of 8

EXAMINATION AND EVALUATION DIVISION DEPARTMENT OF POLYTECHNIC EDUCATION (MINISTRY OF HIGHER EDUCATION)

MATHEMATICS, SCIENCE & COMPUTER DEPARTMENT

FINAL EXAMINATION
JUNE 2012 SESSION

BA201: ENGINEERING MATHEMATICS 2

DATE: 17 NOVEMBER 2012 (SATURDAY)

DURATION: 2 HOURS (2.30 PM – 4.30 PM)

This paper consists of **EIGHT (8)** pages including the front page.

Section A: Structured (1 question – answer all)

Section B: Structured (2 questions – answer one question only)

Section C: Structured (2 questions – answer one question only)

Section D: Structured (Answer ONE (1) MORE question from either Section B or Section C)

CONFIDENTIAL DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE CHIEF INVIGILATOR

(The CLO stated is for reference only)

-3 + 4i

i.

SECTION B

STRUCTURED (25 marks)

INSTRUCTION:

This section consists of TWO (2) structured questions. Answer ONE (1) question only.

QUESTION 2

Find the derivative for each of the following functions.

i.
$$y = 4x^3 + 2x^2 - 3x + 5$$
 CLO 2 : C1

(2 marks)

ii.
$$y = (3x^2 + 2)(x+1)$$
 CLO 2 : C1

(3 marks)

iii.
$$y = \frac{4}{3(5-2x)^3}$$
 CLO 2 : C2 (4 marks)

iv.
$$y = \frac{(6+2x)^2}{(x-5)^3}$$
 CLO 2 : C2 (4 marks)

(b) Find the second derivative for the function. CLO 2 : C2
$$s = \frac{4}{3}t^3 + 2t^2 - 4t + 2$$
 (3 marks)

CLO 1: C2

(2 marks)

ii.
$$1-2.5i$$
 CLO 1 : C2 (2 marks)

Calculate the modulus and the argument for -5 + 7i and then CLO 1: C2 (d) express the complex number in the trigonometric form. (4 marks)

Sketch the following complex number using the Argand diagram.

(e) Given that
$$Z_1 = 8(\cos 20^\circ + i \sin 20^\circ)$$
 and $Z_2 = 16 \angle 30^\circ$. CLO 1 : C2 Find $Z_1 \times Z_2$ and $\frac{Z_2}{Z_1}$ in the trigonometric form.

CONFIDENTIAL

BA201: ENGINEERING MATHEMATICS 2

SECTION C

STRUCTURED (25 marks)

INSTRUCTION:

This section consists of TWO (2) structured questions. Answer ONE (1) question only.

QUESTION 4

- (a) Solve the following integrals.
 - i. $\int \frac{x^3}{2} 2x \frac{3}{x^5} dx$

CLO 3: C 2

(3 marks)

ii.
$$\int (3m-5)(2+m)dm$$

CLO 3: C 2

(3 marks)

iii.
$$\int 4k(2k^2-1)^9 dk$$

CLO 3: C 2

(4 marks)

(b) Integrate each of the followings.

i.
$$\int 3x^2 e^{x^3} dx$$

CLO 3: C3

(4 marks)

ii.
$$\int \frac{3x^2 - 3}{x^3 - 3x} dx$$

CLO 3: C3

(4 marks)

(c) Evaluate
$$\int_{-2}^{1} \frac{x^2}{(x^3+1)^2} dx$$

CLO 3 : C 3

(7 marks)

Page 6 of 8

Find the $\frac{dy}{dx}$ of the following parametric equations.

CLO 2 : C3

(4 marks)

$$x = t^4 + 3$$
 and $y = 2t^2 - 5$

(d) Find the $\frac{dy}{dx}$ for $y = \tan^4(3x - 2)$ by using Chain Rule (5 marks) Technique.

QUESTION 3

(a) Find the coordinates of the turning points of $y = x^3 - x^2$ and determine their nature.

CLO 2:C3

(12 marks)

- (b) A particle moves along a straight line that passes through a fixed point 0. The displacement S meter, from 0 at time t seconds is given by $S = 4t^3 t^2$.
 - i. Find the displacement of the particle at t = 3s and t = 6s. CLO 2:C3 (4 marks)
 - . Find the distance travelled in the 3rd second. CLO 2:C3

(5 marks)

iii. Find the initial acceleration of the particle. CLO 2:C3

(4 marks)

Page 5 of 8

(c) Figure 6(c) shows the curve $x = 8y - 4y^2$.

Figure 6(c)

i. Determine the coordinate of T.

CLO 3: C3

(4 marks)

ii. Determine the volume of revolution when the shaded region is rotated completely about y-axis in terms of π . (7Marks)

SECTION D

STRUCTURED (25 marks)

INSTRUCTION:

For this section, answer ONE (1) MORE question from either Section B or Section C.

QUESTION 5

CONFIDENTIAL

(a) Find the area of the region bounded by the curve $y = 6x - x^2$ between x = 0 and x = 6. (4 marks)

(b) A ball moves along a straight line from a fixed point O. Its acceleration is $a \text{ m/s}^2$, is given by a = 10 - 4t where t is the time, in seconds, after leaving point O.

i. Find the acceleration when t=5 s. CLO 3: C3 (2 marks)

ii. Find the velocity and displacement at time t. CLO 3: C3 (8 marks)

FORMULA BA201 - ENGINEERING MATHEMATICS 2

BASICS OF DIFFERENTIATION

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

5.
$$\frac{d}{dx}(a^x) = a^x \ln a$$

6.
$$\frac{d}{dx}(e^x) = e^x$$

7.
$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\sin x) = \cos x \qquad \qquad 8. \qquad \frac{d}{dx}(\cos x) = -\sin x \qquad 9. \qquad \frac{d}{dx}(\tan x) = \sec^2 x$$

9.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

10.
$$\frac{d}{dx}(\cot x) = -\cos ec^2 x$$
 11.
$$\frac{d}{dx}(\sec x) = \sec x \cdot \tan x$$
 12.
$$\frac{d}{dx}(u^n) = nu^{n-1} \frac{du}{dx}$$

11.
$$\frac{d}{dx}(\sec x) = \sec x \cdot \tan x$$

12.
$$\frac{d}{dx}(u^n) = nu^{n-1} \frac{du}{dx}$$
$$or \frac{d}{dx}(u^n) = \frac{dy}{du} x \frac{du}{dx}$$

BASICS OF INTEGRATION

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \{n \neq -1\}$$

$$\int \frac{1}{x} dx = \ln x + c$$

$$\int e^x dx = e^x + c$$

$$\int \frac{1}{x} \, dx = \ln x + c$$

$$\int e^x \ dx = e^x + c$$

$$\int a^x dx = \frac{a^x}{\ln a} + c$$

5.
$$\int \sin x \, dx = -\cos x + c \quad 6. \quad \int \cos x \, dx = \sin x + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \sec^2 x \ dx = \tan x + c$$

AREA UNDER A CURVE

$$A_{x} = \int_{a}^{b} y \ dx$$

$$A_{y} = \int_{a}^{b} x \ dy$$

VOLUME UNDER A CURVE

$$V_x = \pi \int y^2 dx$$

$$V_{y} = \pi \int_{a}^{b} x^{2} dy$$

THE ROOTS OF QUADRATIC EQUATION

$$x = \frac{-b \pm \sqrt{\left(b^2 - 4ac\right)}}{2a}$$

TRIGONOMETRY IDENTITIES

1.
$$\sin^2\theta + \cos^2\theta = 1$$

7.

2.
$$\sec^2 \theta = 1 + \tan^2 \theta$$

3.
$$\cos ec^2 \theta = 1 + \cot^2 \theta$$

4.
$$\sin 2\theta = 2\sin \theta \cos \theta$$

5.
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

= $1 - 2\sin^2 \theta$

$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$

$$=2\cos^2\theta-1$$

8.
$$a\sin\theta - b\cos\theta = R\sin(\theta - \alpha)$$

$$a\sin\theta + b\cos\theta = R\sin(\theta + \alpha)$$
 8. $a\sin\theta - b\cos\theta = R\sin(\theta - \alpha)$ 9. $a\cos\theta + b\sin\theta = R\cos(\theta - \alpha)$

10.
$$a\cos\theta - b\sin\theta = R\cos(\theta + \alpha)$$