CONFIDENTIAL

BA101: ENGINEERING MATHEMATICS

SECTION A

STRUCTURED (50 marks)

INSTRUCTION:

This section consists of 3 structured questions. Answer TWO (2) questions only.

QUESTION 1

a) Simplify the following expression to the lowest terms. [CLO 1: C1]

i.
$$\frac{3n^2 + 6n}{9n^3 - 3n}$$
 (2 marks)

ii.
$$\frac{4q^2 + 6q}{2q}$$
 (2 marks)

iii.
$$\frac{d-3}{4} - \frac{d+2}{6}$$
 (6 marks)

b) If $\frac{s}{3} + 1 = \frac{s}{9}$, find the value of s. [CLO1: C1]

(5 marks)

c) Find the value of 'z' in the following quadratic equation by factorisation.

[CLO1: C1]

$$z^2 - 7z + 16 = 4 (5 marks)$$

d) Use the elimination method to find the value of 'x' and 'y'. [CLO 1 : C3]

$$3x - y = 7$$

$$3x - 6y = -3$$
(5 marks)

Page 2 of 11

EXAMINATION AND EVALUATION DIVISION DEPARTMENT OF POLYTECHNIC EDUCATION (MINISTRY OF HIGHER EDUCATION)

MATHEMATICS, SCIENCE & COMPUTER DEPARTMENT

FINAL EXAMINATION
JUNE 2012 SESSIONS

BA101: ENGINEERING MATHEMATICS 1

DATE: 17 NOVEMBER 2012 (SATURDAY) DURATION: 2 HOURS (11.15 AM – 1.15 PM)

This paper consists of **ELEVEN** (11) pages including the front page SECTION A: Structured (3 questions – answer two only)

SECTION B: Structured (3 questions – answer two only)

CONFIDENTIAL DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE CHIEF INVIGILATOR

(The CLO stated is only for references only)

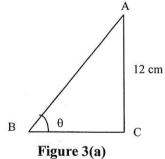
CONFIDENTIAL

BA101: ENGINEERING MATHEMATICS

QUESTION 3

a) Given $\sin \theta = \frac{8}{17}$ with $0^{\circ} < \theta < 90^{\circ}$. Without using the calculator, find the values of the following. [CLO1: C1]

i.	cos θ	(2 marks)
ii.	an heta	(2 marks)
iii.	$\cos\!ec heta$	(2 marks)
iv.	$\sec heta$	(2 marks)
٧.	$\cot heta$	(2 marks)


b) Find θ value of $0^{\circ} < \theta < 360^{\circ}$ which satisfy the following trigonometric equations. [CLO1: C1]

i.	$\tan\theta = 0.4245$	(4 marks)
ii.	$\sin\theta = -0.7431$	(4 marks)

c) From the right angled triangle below, find: [CLO1: C1]

i.
$$\sin \theta$$
 (3 marks)
ii $\cos \theta$ (2 marks)

ii. $\cos\theta$ (2 marks) iii. $\tan\theta$ (2 marks)

Page 4 of 11

CONFIDENTIAL

BA101: ENGINEERING MATHEMATICS

QUESTION 2

a) Find the values of the following expressions, express your answers in standard form. [CLO1: C1]

i.
$$3.5 \times 10^{-6} + 6 \times 10^{-5}$$
 (2 marks)

ii.
$$0.65 \times 0.24$$
 (2 marks)

b) Simplify each of the following. [CLO1: C1]

i.
$$2^{x+2} \times 2^{x+1}$$
 (2 marks)

ii.
$$6^{\frac{1}{2}x} \div 6^{\frac{1}{4}x}$$
 (2 marks)

c) Simplify the expression below. [CLO1: C1]

$$27^{x} \times 9^{-6x} \times 9^{2x-7}$$
 (4 marks)

d) Find the values of the following logarithm. [CLO1: C1]

i.
$$9\log_{\frac{1}{3}} \frac{1}{3}$$
 (2 marks)

ii.
$$\log_{\sqrt{6}} 6^{\frac{1}{2}}$$
 (2 marks)

e) Given that $\log_2 3 = 1.585$ and $\log_2 5 = 2.322$, find the value of

(4 marks)

f) Solve the following logarithmic equation. [CLO1: C1]

$$\log_4(y-2) + 3\log_2 8 = 10$$
 (5 marks)

Page 3 of 11

c)

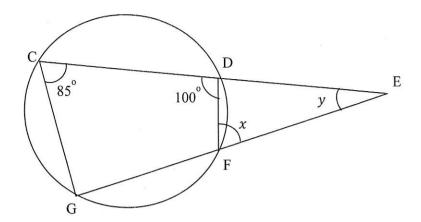


Figure 4(c)

From Figure 4(c), calculate value of:

[CLO 2: C2]

1.)

(1 mark)

ii. y

(3 marks)

d)

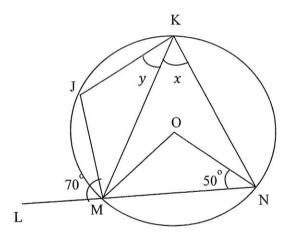


Figure 4(d)

From Figure 4(d), JKMN is a circle at center O, LMN is a straight line.

Find the value of:

y

[CLO 2:C2]

ii.

(3 marks) (2 marks)

Page 6 of 11

SECTION B

CONFIDENTIAL

STRUCTURED (50 marks)

INSTRUCTION:

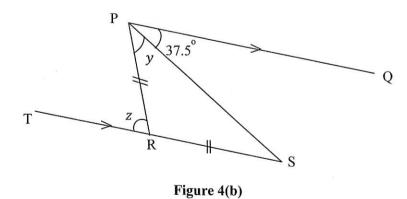
This section consists of 3 structured questions. Answer TWO (2) questions only.

QUESTION 4

From Figure 4(a), line AB and CD is a straight line.

B [CLO 2:C1]

i. Find the value of x


(2 marks)

ii. Find the value of y

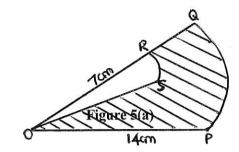
(3 marks)

(b)

ii.

From Figure 4(b) above, TRS is a straight line. Calculate the value of:

[CLO 2:C2]


. y (1 mark)

z (3 marks)

Page 5 of 11

QUESTION 5

a)

In the Figure 5(a), PQ and RS are two arcs from the same circle with it's centre O. Given that $\angle ROS = 20^{\circ}$ and $\angle POQ = 60^{\circ}$.

i. Find the perimeter of a sector POQ.

[CLO2: C1]

(5 marks)

ii. Calculate the area of the shaded region.

[CLO2: C3]

(7 marks)

b)

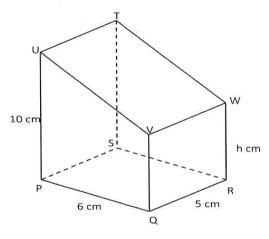
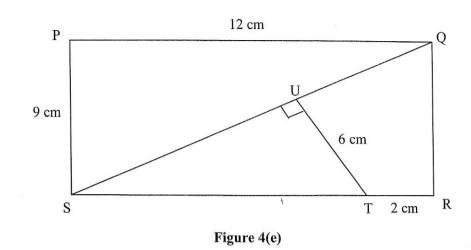



Figure 5(b)

Figure 5(b) shows a right-prism PGRSTUVW with trapezium PQVU as its uniform cross-section. Given that the volume of the prism is $210cm^3$, calculate the value of h. [CLO2: C2]

(6 marks)

e) From Figure 4(e), PQRS is a rectangle and TUS is a right-angled triangle.

Find the length of QU. [CLO 2:C3]

(7 marks)

BA101: ENGINEERING MATHEMATICS

QUESTION 6

- a) One straight line connects point A(-3,6) and point B(7,-3). From that straight line, find:
 - i. the gradient of the straight line AB.

[CLO2: C1]

(2 marks)

ii. the distance of AB.

[CLO2: C1]

(2 marks)

iii. the y-interception.

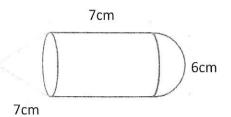
[CLO2: C1]

(2 marks)

iv. the equation of the straight line AB.

[CLO2: C1]

(2 marks)


- b) The straight lines A and B have the equation y = 5x 6 and y = -2x + 3 respectively. Find the intersection of A and B using the graphical method for $-3 \le x \le 3$. [CLO 2:C3]
 - (8 marks)
- c) i. Complete the following table by using the given equation.

$$y = x^2 - 6x + 5$$

[CLO 1:C1]

(4 marks)

х	- 2	0	2	4	6	8
у			- 3			21

CONFIDENTIAL

Figure 5(c)

c) Figure 5(c) shows a composite solid consisting of a cone, a cylinder and a hemisphere. Calculate the volume of the solid. [CLO2: C2]

(7 marks)

FORMULA SHEET FOR ENGINEERING MATHEMATICS (BA101)

INDICES AND LOGARITHM

Basic of Index and Logarithm

1.
$$y = a^x \leftrightarrow x = \log_a y$$

Rules of Index

$$1. a^m \times a^n = a^{m+1}$$

1.
$$a^{m} \times a^{n} = a^{m+n}$$
 5. $\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$, $b \neq 0$ $A = \frac{1}{2}r^{2}\theta$
2. $\frac{a^{m}}{a^{n}} = a^{m-n}$ 6. $a^{-n} = \frac{1}{a^{n}}$, $a \neq 0$ Area of a Segment $A = \frac{1}{2}r^{2}\theta - \frac{1}{2}r^{2}\theta$
3. $\left(a^{m}\right)^{n} = a^{mn}$ 7. $a^{\frac{m}{n}} = \sqrt[n]{a^{m}}$

$$2. \frac{a^m}{a^n} = a^{m-1}$$

6.
$$a^{-n} = \frac{1}{a^n}$$
, $a \neq 0$

$$3. \left(a^m\right)^n = a^{mr}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

$$4. (ab)^n = a^n b^n$$

Rules of Logarithm

1.
$$\log_a MN = \log_a M + \log_a N$$

$$2. \log_a \frac{M}{N} = \log_a M - \log_a N$$

3.
$$\log_a N^P = P \log_a N$$

FORMULA OF TRIANGLE

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rules $a^2 = b^2 + c^2 - 2bc \cos A$

Area of Triangle = $\frac{1}{2}$ a b sin C

TRIGONOMETRY

Pythagoras' Theorem

Trigonometric Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cos^2 \theta + \sin^2 \theta = 1$$
$$1 + \tan^2 \theta = \sec^2 \theta$$

$$c^2 = a^2 + b^2$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Compound-angle

 $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$ $cos(A \pm B) = cos A cos B \mp sin A sin B$ $tan(A \pm B) = tan A \pm tan B$ 1 ∓ tan A tan B

Double-angle

Double-angle

$$\sin 2A = 2 \sin A \cos A$$

 $\cos 2A = \cos^2 A - \sin^2 A$
 $= 1 - 2 \sin^2 A$
 $= 2 \cos^2 A - 1$
 $\tan 2A = 2 \tan A$

 $1 - \tan^2 A$

MEASUREMENT

Arc Length of a Circle

$$s = r\theta$$

Area of a Sector

$$A = \frac{1}{2} r^2 t$$

$$A = \frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$$

SURFACE AREA AND VOLUME

Cylinder: $A = 2 \pi rh + 2 \pi r^2$ $V = \pi r^2 h$

 $A = \pi r s + \pi r^2$

$$V = \frac{4}{3}\pi r^{3}$$

Pyramid: A = area of four triangles + area of base

$$V = (1/3) x$$
 (area of base) x (height)

GRAPH

$$y = ax^2 + bx + c \quad , a \neq 0$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$y = mx + c$$

$$Mid \ point = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$Vertex, x = -\frac{b}{2a}$$

SOLVING QUADRATIC EQUATION

$$1. x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$2. \qquad \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = 0$$

CONFIDENTIAL

BA101: ENGINEERING MATHEMATICS

Draw the graph of the function $y = x^2 - 6x + 5$ for the range of

$$-2 \le x \le 8$$

(5 marks)

Page 11 of 11