CONFIDENTIAL

BA501: ENGINEERING MATHEMATICS 4

SECTION A

INSTRUCTION:

This section consists of TWO (2) questions (QUESTION 1 and QUESTION 2).

Answer ONE OF the questions.

QUESTION 1

- a) In the expansion of $\left(\frac{3}{2}x+3\right)^5$, find: [CLO 1]
 - i. the first four terms.

(5 marks)

ii. the coefficient independent of x.

(7 marks)

- b) Expand the function $\frac{x+1}{(2+4x)^5}$ up to the first four terms. [CLO 1]
- c) Expand $\left(1-\frac{x}{2}\right)^7$ by using the Binomial Theorem in ascending power of x including the term in x^3 . Then, find the value of $(0.88)^7$ correct to 3 decimal places.

 [CLO 1]

(7 marks)

Page 2 of 10

POLITEKNIK Jabatan Pengajian Politeknik

EXAMINATION AND EVALUATION DIVISION DEPARTMENT OF POLYTECHNIC EDUCATION (MINISTRY OF HIGHER EDUCATION)

CIVIL ENGINEERING DEPARTMENT

FINAL EXAMINATION
DECEMBER 2011 SESSION

BA501: ENGINEERING MATHEMATICS 4

DATE: 25 APRIL 2012 (WEDNESDAY)
DURATION: 2 HOURS (11.15 AM – 1.15 PM)

This paper consists of **TWELVE (12)** pages including the front page and appendix.

This paper consists of EIGHT(8) questions. Answer FOUR (4) questions only.

CONFIDENTIAL DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE CHIEF INVIGILATOR

(CLO stated at the end of each question is referring to the learning outcome of the topic assessed. The CLO stated is only for lectures' references.)

SECTION B

INSTRUCTION:

This section consists of TWO (2) questions (QUESTION 3 and QUESTION 4).

Answer ONE OF the questions.

QUESTION 3

a)

ABCD is a trapezium where AB is parallel to DC and $AB = \frac{4}{3}DC$. P is a point on AB line, where AP = 3PB. Given that $\overrightarrow{AB} = 4\hat{a}$, find the following vector in terms of \hat{a} . [CLO 2]

i) \overrightarrow{AP}

ii) \overrightarrow{DC} (1 mark)

iii) $\overrightarrow{AP} + \overrightarrow{DC}$ (1 mark)

b) If $\overrightarrow{OP} = a\hat{i} + 4\hat{j}$ and $\overrightarrow{OQ} = \hat{i} - 2\hat{j}$, given $|\overrightarrow{OP}| = 5$, find: [CLO 2]

i. a (2 marks)

ii. angle between \overrightarrow{OP} and \overrightarrow{OQ} (4 marks)

Page 4 of 10

(1 mark)

QUESTION 2

CONFIDENTIAL

a) Expand the first four terms for the following power series. [CLO 1]

$$(3x-1)\ln(1+\frac{x}{3})$$
 (5 marks)

- b) Find the coefficient of x^3 in the expansion of $\frac{e^{(x-3)}}{3}$. [CLO 1] (5 marks)
- c) Using Taylor series, expand the first four terms for $f(x) = \frac{1}{3x-1}$, at $x_0 = 2$. [CLO 1]

d) Using Mc Laurin series, expand the first four terms for $f(x) = 3e^{-4x} + \frac{2}{e^x}$. [CLO 1]

(8 marks)

(7 marks)

QUESTION 4

a) Construct the partial fraction of the following: [CLO 2]

i)
$$\frac{x-1}{(3x-5)(x-3)}$$
 (5 marks)

ii)
$$\frac{1}{(x-3)(x+1)^2}$$
 (8 marks)

b) Convert $\frac{x^3 + 16}{x^3 - 4x^2 + 8x}$ to proper fraction. Then, find the partial fraction. [CLO 2]

(12 marks)

c) Given $\overrightarrow{OA} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\overrightarrow{OB} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{OC} = 3\hat{i} + \hat{j} - 3\hat{k}$ are position vectors. Find: [CLO 2]

CONFIDENTIAL

i) direction cosine of \overrightarrow{AB} (5 marks)

ii)
$$\overrightarrow{OA} \times (\overrightarrow{OB} \times \overrightarrow{OC})$$
 (4 marks)

iii)
$$\overrightarrow{OA} \bullet (\overrightarrow{OB} \times \overrightarrow{OC})$$
 (3 marks)

iv)
$$\overrightarrow{OC} \bullet (\overrightarrow{OA} \times \overrightarrow{OB})$$
 (4 marks)

BA501: ENGINEERING MATHEMATICS 4

QUESTION 6

a) Find the inverse Laplace transform for the following functions. [CLO 3]

i.
$$F(s) = \frac{24}{s^5} + \frac{2s}{s^2 + 36} - \frac{7}{s + 7}$$
 (5 marks)

ii.
$$F(s) = \frac{4s+5}{s^2+9} + \frac{4}{s^2}$$
 (6 marks)

b) Find the inverse Laplace transform using partial fraction method for the following function. [CLO 3]

$$\frac{3s+11}{(s-3)(s+2)} \tag{7 marks}$$

c) Sketch a graph for the following functions. [CLO 3]

$$u(t) = \begin{cases} 0, 0 \le t < 2 \\ 2, 2 \le t < 5 \\ 1, 5 \le t \end{cases}$$
 (3 marks)

d) Write the following functions in terms of unit step function and find the Laplace transform of the functions. [CLO 3]

$$f(t) = \begin{cases} 4, 0 \le t < 5 \\ 1, 5 \le t \end{cases}$$
 (4 marks)

INSTRUCTION:

SECTION C

CONFIDENTIAL

This section consists of TWO (2) questions (QUESTION 5 and QUESTION 6). Answer ONE OF the questions.

QUESTION 5

a) Using the formula, derive the Laplace transform of the following functions.
 [CLO 3]

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

i.
$$f(t) = 16 (5 marks)$$

ii.
$$f(t) = 2e^{6t}$$
 (5 marks)

b) Find the Laplace transform for the following functions using the Laplace transform Table. [CLO 3]

i.
$$f(t) = t^3 + 8t^5 - \sin 5t$$
 (3 marks)

ii.
$$f(t) = 10 + 2e^{3t} - 3\cos 4t - 5t^4$$
 (4 marks)

iii.
$$f(t) = e^{3t} \cosh 2t + 3e^{-4t} \sin 6t - 5$$
 (4 marks)

iv.
$$f(t) = 8 \sin t + 5e^{-5t} \sinh 3t - 4e^{-7t} \cos 8t$$
 (4 marks)

QUESTION 8

- a) Find the focus and directrix of the following parabolic equation. Then, sketch the graph. [CLO 4]
 - i) $y^2 = 16x$

(3 marks)

ii) $x^2 = -8y$

(3 marks)

b) Find the vertex, focus point, eccentric and directrix for the following ellipse equation. Then, sketch the curve. [CLO 4]

$$\frac{x^2}{36} + \frac{y^2}{81} = 1$$
 (9 marks)

c) Find the tangent and normal equation at point (6,-1) for the following hyperbolic equation. [CLO 4]

$$x^2 - 12y^2 = 32$$

(10 marks)

SECTION D

CONFIDENTIAL

INSTRUCTION:

This section consists of TWO (2) questions (QUESTION 7 and QUESTION 8).

Answer ONE OF the questions.

QUESTION 7

a) Sketch $f(x) = e^x$ and $f(x) = e^{-x}$. Then, find the point of intersection for both functions. $(-2 \le x \le 2)$. [CLO 3]

(6 marks)

- b) Find the equation for each of the circle which has [CLO 3]
 - i) Center (2,-1) and radius 3.

(4 marks)

ii) Center (-3,7) and tangent to the x-axis.

(5 marks)

c) State the center and radius of each of the following circles. [CLO 3]

i)
$$x^2 + y^2 + 2y - 2x = 4$$

(5 marks)

ii)
$$3x^2 + 3y^2 - 3x - 6y - 2 = 0$$

(5 marks)

Parabola

1.	Vertical	i. $x^2 = 4ay$	ii. $(x-h)^2 = 4a(y-k)$
2.	Horizontal	i. $y^2 = 4ax$	ii. $(y-k)^2 = 4a(x-h)$
3.	Vertex	v = (h, k)	
4.	Focus	(h+a,k) – horizontal	(h,k+a) – vertical
5.	Directrix	i. $x = h - a$	ii. $y = k - a$

1711	٠.		_	_
\mathbf{E}	ш	n	S	ŧ
	-	_	~	

Hyperbola

1.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	1. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	horizontal	
		$\frac{2.}{a^2} - \frac{x^2}{b^2} = 1$	vertical	

Laplace Transform

	cc mansio				
NUM	f(t)	F(s)	9	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
1	а	$\frac{a}{s}$	10	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
2	at	$\frac{a}{s^2}$	11	sinh ωt	$\frac{\omega}{(s^2-\omega^2)}$
3	e^{-at}	$\frac{1}{s+a}$	12	cosh ωt	$\frac{s}{(s^2-\omega^2)}$
4	te ^{-at}	$\frac{1}{(s+a)^2}$	13	$f_1(t) + f_2(t)$	$F_1(s) + F_2(s)$
5	t ⁿ	$\frac{n!}{s^{n+1}}$	14	$\frac{df}{dt}$	sF(s)-f(0)
6	sin <i>ωt</i>	$\frac{\omega}{(s^2+\omega^2)}$	15	$\int_{0}^{t} f(u) du$	$\frac{F(s)}{s}$
7	cos wt	$\frac{s}{(s^2+\omega^2)}$	16	$\int (t-a)u(t-a)$	$e^{-as}F(s)$
8	$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	17	$t^n.f(t)$	$(-1)^n \frac{d^n}{ds^n} [F(s)]$
	The state of the s				

Trigonometric Identities

1	$\sin 2x = 2\sin x \cos x$
2	$\cos 2x = 2\cos^2 x - 1 = 1 - \sin^2 x$

Binomial Expansion

1.
$$(a + x)^n = a^n + {}^nC_1a^{n-1}x + {}^nC_2a^{n-2}x^2 + \dots + x^n$$
 (n = positive integer)

2. $(1+x)^n = 1 + nx + \frac{n(n-1)x^2}{2!} + \frac{n(n-1)(n-2)x^3}{3!} + \dots \infty$ (n = negative interger or fraction)

FORMULA OF ENGINEERING MATHEMATICS 4 (BA501)

Power Series

CONFIDENTIAL

101	CI SCIICS	TARREST TO SERVICE STATE OF THE SERVICE STATE OF TH	
1.	$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!}$		
2.	$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n}$		
3.	$f(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \dots + \frac{f''(0)x^n}{n!}$	1	(MACLAURIN)
4.	$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)(x - x_0)^2}{2!} + \frac{f'''(x_0)(x - x_0)^3}{3!} + \dots + \frac{f'''(x_0)(x - x_0)^3}{3!} + \dots$	$\frac{f^n(x_0)(x-x_0)^n}{n!}$	(TAYLOR)

Vector and Scalar

1.	$\overline{A} \bullet \overline{B} = a_1 a_2 + b_1 b_2 + c_1 c_2$	3.	$\cos\theta = \frac{\overline{A} \bullet \overline{B}}{ A B }$	5.	Direction Cosine \overrightarrow{OP} $\cos \alpha = \frac{x}{ \overrightarrow{OP} }$
					$\cos \beta = \frac{y}{ \overrightarrow{OP} }$ $\cos \gamma = \frac{z}{ \overrightarrow{OP} }$
2.	$\overline{A} \times \overline{B} = \begin{pmatrix} i & j & k \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}$	4.	Unit vector $\hat{u} = \frac{\overline{u}}{ u }$	6.	Area of a triangle $\frac{1}{2} \overrightarrow{AB} \times \overrightarrow{BC} $

Non Linear Equation (Circle)

1.	$(x-a)^2 + (y-b)^2 = r^2$		
2.	$x^2 + y^2 + 2gx + 2fy + c = 0$	$r = \sqrt{g^2 + f^2 - c}$	center = (-g, -f)
3.	Equation of a tangent, $y - y_1 =$	$m(x-x_1)$	